Categories
Blog Tech Articles

Understanding A2L Refrigerants

In December 2020, congress passed the American Innovation and Manufacturing (AIM) Act and in 2021 the EPA introduced a rule mandating an 85% nationwide phasedown in high-global warming potential (GWP) hydrofluorocarbon (HFC) refrigerants by 2036. This phasedown will be accomplished in three ways:

(1) Phasing down production and consumption

(2) Maximizing reclamation and minimizing releases from equipment

(3) Facilitating the transition to next-generation technologies and low-GWP refrigerants through sector-based restrictions. Many of these lower-GWP refrigerants are considered mildly flammable with an ASHRAE Standard 34 designation of A2L.

The transition to next-generation refrigerant technologies is being aided by the EPA’s Significant New Alternatives Policy (SNAP) program which approves the use of low-GWP refrigerant for specific uses. Many A2L refrigerants have already been approved by the EPA with many more approvals in the works.

The goal of this article is to provide information on refrigerant classifications, the differences between refrigerants and the influences driving the shift away from traditional refrigerants to A2L refrigerants.

Refrigerant Classification

The ASHRAE Standard 34 classification table is designed to categorize refrigerants according to two primary factors: flammability and toxicity. Regarding flammability, refrigerants are tested and categorized by several factors including how much refrigerant per unit volume of air will support combustion, the amount of energy needed to initiate combustion, the amount of energy released from combustion, and the rate of combustion propagation. Toxicity designated as A or B is defined by the occupational exposure limit (OEL). Lower toxicity refrigerants (A) have an OEL of ≥ 400 ppm while higher toxicity refrigerants (B) have an OEL of <400 ppm). 7

To give you an example of the classification table use, the following describes various refrigerants and their classifications:

Flammability

Since A2L refrigerants are mildly flammable it is important to understand the characteristics of flammability and how they are affected by the HVAC environment. There are three important factors when understanding flammability.

  • Lower Flammability Limit (LFL): The concentration in air necessary to generate a flammable mixture.
  • Minimum ignition energy (MIE): The lowest energy required to ignite the flammable material in air or oxygen found at a certain optimum (stoichiometric) mixture.
  • Heat of combustion (HOC): The amount of energy that is obtained from the burning of a volume of gas is measured in Btu.

LFL – Lower Flammability Limit

Mildly flammable A2Ls consist of HFCs, hydrofluoroolefins (HFOs), and also blends of these two synthetic refrigerants which have a high LFL, often 8 times higher than A3 refrigerants such as R-290 Propane. This means that a much larger concentration of A2L must be present to form flammable concentrations.  This is important when considering refrigerant leakage especially in enclosed spaces. While a very low amount of A3 refrigerant or a low amount of A2 refrigerant in an enclosed space can be very dangerous, A2L refrigerants require a much larger amount of gas leakage to reach sufficient concentrations necessary for ignition.

MIE – Minimum Ignition Energy

A2L refrigerants have a significantly higher minimum ignition energy (MIE) which means it is harder to ignite than A3 refrigerants. Hydrocarbon vapors such as propane (R-290) can be easily ignited by many energy sources, even sometimes by the lower levels produced by static electricity.5 This can be orders of magnitude lower than the levels required to ignite the A2L refrigerants. Even gasoline has a much lower MIE than A2L refrigerants by almost a factor of 10! 6

HOC – Heat of combustion

Heat of combustion is the amount of energy released during combustion. The units of measure for HOC are expressed either in kilojoules per gram (kJ/g) or Btu/lb. Simply stated, you can think of HOC as the violence of the reaction when a gas ignites.A3 refrigerants like Propane have a very high HOC, on the order of 19,905 Btu/lb. whereas A2 and A2L have much lower values on the order of 2700-4400 Btu/lb. This means that while A2 and A2L refrigerants can, under the right circumstances, burn with veracity, they are generally not in the category of explosion hazard like you would find in A3 refrigerants.

What you may find interesting is that the HOC for an A1 refrigerant like R-410A is 2,800 Btu/lb. and a nominal A2L refrigerant such as R-32 has a HOC is 3,869 Btu/lb. Given a typical residential ducted split unit charge being ~ 15 lbs., there is essentially only about 24,000 Btu difference between the A2L and R-410A. This difference is equivalent in relative comparison to burning 3.4 lbs. of dry wood (about 2.5 feet of dry 2 x 4) versus burning 1.7 lbs. Duraflame™ wax fire log (about 38% of a single log.) 3,9

Flammability Summary

You can summarize refrigerant flammability into the ease of ignition, expansion or propagation of the flame, and the amount of energy release.9

  • Class 1 refrigerants have no propagation at 60ºC but may still be flammable at higher temperatures.
  • Class 2L refrigerants are “mildly flammable”, difficult to ignite with a relatively low energy release and low flame propagation speed.
  • Class 2 refrigerants ignite easily with a relatively high energy release.
  • Class 3 refrigerants ignite very easily and are potentially explosive.

Compared to A1 refrigerants, A2Ls have slightly higher flammability properties, and if burned, produce similar types and amounts of by-products (e.g. HF), and somewhat higher heat of combustion/fuel value. Flammability risks from A2L refrigerants will be mitigated by a variety of equipment design changes, applicable codes and standards, and technician training. The lower flammability limit of A2L refrigerants is very high, which means that a high concentration of refrigerant is needed to create a flammable mixture (ASHRAE 34). 9, 10

So How Does This Affect Me?

The move to A2L refrigerants is happening now. Most states have passed legislation to allow the use of the more flammable, low GWP A2Ls for air conditioning only or air conditioning and refrigeration.

Since each state handles the code-making process differently, it is important to understand your local building codes for A2L allowance. Except for a few like Illinois and Texas, most states have a statewide code process. For states without codes, legislation needs to pass guaranteeing the acceptance of A2L refrigerants approved by U.S. EPA SNAP throughout the state. Please refer to your state and local building codes for specific information on your situation.

The shift to more flammable refrigerants will require the appropriate equipment for installation and servicing. It is critical to make sure your test equipment is compatible with A2L refrigerants. At Fieldpiece, we have the products you will need to safely navigate this transition. The following Fieldpiece test tools have been deemed compatible for use with A2L refrigerants:

Citations

1 – An introduction to A2L refrigerants and their use in Refrigeration, Air Conditioning and Heat Pump applications, FETA 2017, https://www.refcom.org.uk/media/1202/an-introduction-to-a2l-refrigerants-final.pdf

2- Refrigerants Codes & Standards in Canada 2018, https://www.hrai.ca/uploads/userfiles/files/Greg_Scrivener_HRAI2018_A2L_Refrigerants_Notes(1).pdf

3 -A2L Terms You Should Know  https://www.achrnews.com/articles/146639-a2l-terms-you-should-know

4 – A2L and A3: the better you know them, the better you use them https://www.refrigerationworldnews.com/a2l-and-a3-the-better-you-know-them-the-better-you-use-them/#:~:text=Among%20the%20refrigerants%20that%20are,(Class%20A3%20and%20A2L).

5 – What Are A2L Refrigerants and Why Do We Need Them?, C-11869 (7/22), Chemours

6 – MIE Minimum Ignition Energy, Thorne & Derrick International, https://www.heatingandprocess.com/product/hazardous-area-zones/mie-minimum-ignition-energy/

7 – ANSI/ASHRAE Standard 34-2010, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2010-07-01. ISSN 1041-2336

8 – ANSI/ASHRAE Standard 34-2007, Designation and Safety Classification of Refrigerants. Atlanta, GA: American Society of Heating, Refrigerating and Air-Conditioning Engineers. 2008-06-26. ISSN 1041-2336

9 – AHRI Chapter 2. Chemical, Physical, and Environmental Properties of ASHRAE Standard 34 and ISO 817, chapter 2, pg 3

10 –  http://lifefront.eu/refrigerant-leakage-database/

Categories
Blog

MR45: Refrigerant Best Practices

Smart recovery
If you’re recovering refrigerant, here are a few tips to help the process go smoothly. For starters, always wear the proper PPE. This includes protective gloves, goggles and shoes. Also, before you start the process, turn off the power to the system at the breaker.

Inspect the tank
The recovery tank is a pressurized vessel. Inspect it for damage or rust before using it. If you’re starting with an empty tank, pull it to a vacuum of 500 microns before beginning the recovery process to remove any particulates, moisture and non-condensable gasses from the tank. Using a scale, be sure calculate the maximum tank weight and only fill up to 80% of the maximum capacity.

Eliminate restrictions
One way to make recovery go as quickly as possible is to eliminate all possible restrictions for refrigerant flow. First, use a valve core removal tool to remove the valve cores on both the high-side and low-side service ports. Also, use a shorter, larger diameter hose with the core depressors removed. If you’re using a Fieldpiece MR45 – Digital Refrigerant Recovery Machine, inspect the mesh filter on the inlet port to be sure it’s clear of debris. Another way to increase overall flow is to connect the discharge hose to the recovery cylinder at the vapor port. This eliminates the resistance of the internal dip tube that’s connected to the liquid port.

Flip your tank
Regardless if you’re recovering into a container that already has refrigerant in it or not, flip it upside down before starting the recovery process using the vapor port. This ensures that the liquid that you’re putting into the cylinder comes in contact first with the liquid that is already in the tank. If not, it could flash into a gas as it enters. This keeps tank pressure down and speeds up the process.

Self-purge when done
When complete, don’t forget to self-purge all remaining refrigerant in the recovery machine before removing any hoses. To do this, turn the dial to self-purge and press start. This process automatically shuts off after removing all refrigerant from the line-set and the machine. Before disconnecting the discharge hose from the cylinder, be sure to close the tank valve first. This ensures you don’t lose any refrigerant from the tank. Also, be cautious when disconnecting the discharge hose as it will be filled with refrigerant.

Pick up an MR45
Weighing just 22 pounds, the Fieldpiece MR45 Refrigerant Recovery Machine is the fastest, lightest, and easiest-to-use recovery machine on the market. It has a large digital screen that shows the system pressure and the tank pressure throughout the entire recovery process—making recovery quicker and more efficient than ever. It’s powered by a durable, variable speed, smart DC motor, and has a convenient single-dial control and easy-access ports.

Recovery can be simple and fast if you use these tips and follow established safety procedures. Add the Fieldpiece MR45 – Refrigerant Recovery Machine to your arsenal at Fieldpiece.com today and to see these best practices in action, go to Fieldpiece University and take the course while acquiring NATE credits!